Enrico Fermi (September 29, 1901 – November 28, 1954) was an Italian physicist most noted for his work on beta decay, the development of the first nuclear reactor, and for the development of quantum theory. Fermi won the 1938 Nobel Prize in Physics for his work on nuclear fission.
A friend of the family, Adolfo Amidei, guided the young Fermi’s study of algebra, trigonometry, analytic geometry, calculus and theoretical mechanics. Amidei also suggested Fermi attend not a university in Rome but to apply to the prestigious “Scuola Normale Superiore” of Pisa, a special university-college for selected gifted students in 1918. Fermi did especially well, and the examiner at the Scuola Normale thought the 17-year-old Fermi’s competition essay worthy of a doctoral exam. He graduated with a doctorate in 1922, and the next year left for the University of Göttingen, then the center of the quantum physics world. Fermi became unhappy, though, with what he saw as an excessively formal theoretical style under the influence of Max Born, and so after six months left for the University of Leiden, Netherlands, to work with Paul Ehrenfest. While there, he also met Albert Einstein.
The group went on with its now famous experiments, but in 1933 Rasetti left Italy for Canada and the United States, Pontecorvo went to France, Segrè left to teach in Palermo.
During their time in Rome, Fermi and his group made important contributions to many practical and theoretical aspects of physics. Some of these include Fermi-Dirac statistics, the theory of beta decay, and the discovery of slow neutrons, which was to prove pivotal for the working of nuclear reactors.
In 1938, Fermi won the Nobel Prize in Physics for his “demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons”.
After Fermi received the prize in Stockholm, he, his wife Laura, and their children emigrated to New York. By this time, the Fascist government in Italy had instituted anti-Semitic laws, and Fermi’s wife, Laura Capon, was Jewish. Soon after his arrival in New York, Fermi began working at Columbia University.
At Columbia, Fermi verified the initial nuclear fission experiment of Hahn and Fritz Strassman (with the help of Booth and Dunning). Fermi then began studies that led to the construction of the first nuclear pile.
Fermi recalled the beginning of the project in a speech given in 1954 when he retired as President of the American Physical Society:
“I remember very vividly the first month, January, 1939, that I started working at the Pupin Laboratories because things began happening very fast. In that period, Niels Bohr was on a lecture engagement at the Princeton University and I remember one afternoon Willis Lamb came back very excited and said that Bohr had leaked out great news.
After the famous letter signed by Albert Einstein (transcribed by Leó Szilárd) to President Franklin D. Roosevelt in 1939, the Navy awarded Columbia University the first Atomic Energy funding of US$ 6,000. The money was used in studies which led to the first nuclear reactor—a massive “pile” of graphite bricks and uranium fuel which went critical on December 2, 1942, at the University of Chicago. This experiment was a landmark in the quest for energy, and it was typical of Fermi’s brilliance. Every step had been carefully planned, every calculation meticulously done by him. When man first achieved the first self sustained nuclear chain reaction, a coded phone call was made to one of the leaders of the Manhattan Project, James Conant: ‘The Italian navigator has landed in the new world… The natives were very friendly’.
He became a naturalized citizen of the United States of America in 1944.
Fermi was widely regarded as the only physicist of the twentieth century who excelled both theoretically and experimentally (see link below in ‘References’). The well-known historian of physics, C. P. Snow, says about him, “If Fermi had been born a few years earlier, one could well imagine him discovering Rutherford’s atomic nucleus, and then developing Bohr’s theory of the hydrogen atom. If this sounds like hyperbole, anything about Fermi is likely to sound like hyperbole”. Fermi’s ability and success stemmed as much from his appraisal of the art of the possible, as from his innate skill and intelligence. He disliked complicated theories, and while he had great mathematical ability, he would never use it when the job could be done much more simply. He was famous for getting quick and accurate answers to problems which would stump other people.
Fermi’s most disarming trait was his great modesty, and his ability to do any kind of work, whether creative or routine. It was this quality that made him popular and liked among people of all strata, from other Nobel Laureates to technicians.
When he submitted his famous paper on beta decay to the prestigious journal Nature, the journal’s editor turned it down because “it contained speculations which were too remote from reality”. Thus, Fermi saw the theory published in Italian and in German before it was published in English.
He never forgot this experience of being ahead of his time, and used to tell his protégés: “Never be first; try to be second”.
On November 28, 1954, Fermi died of stomach cancer in Chicago and was interred there in Oak Woods Cemetery. He was 53. As Eugene Wigner wrote: “Ten days before Fermi had passed away he told me, ‘I hope it won’t take long.’ He had reconciled himself perfectly to his fate”.
No comments:
Post a Comment